
276 Java Programming for A-level Computer Science

11 Stacks and queues

Computer software applications involve four components: input, processing, storage and output of

data.

An important aspect of program design is to select suitable ways for representing the data which will

be handled by the system.

Java provides a variety of simple data types for representing single data items. We have made use

of some of these in previous programs:

 integer whole numbers, such as 89

 double decimal (real) numbers, such as 36.25

 String text, such as "Dafydd Jones"

 Boolean true or false

Sometimes it is convenient to organise data items into a group, so that they can be processed

together or stored together more conveniently. We then use a data structure made up from the

simple data types. Examples of data structures which we have met in previous programs are arrays

and records:

 Data items are often stored in an array when sorting or searching is required.

 Data items relating to a particular entity, such as an employee or shop stock item, are often

combined into a record for storage on disc.

We can go one step further in programs by using a special arrangement of data known as an

'abstract data structure'. As we shall see, an abstract data structure has specific rules for the ways

in which data items are added and retrieved.

There are four common types of abstract data structure: stack, queue, linked list and binary tree.

We will examine the first two of these in the current chapter.

input processing output

storage

 Chapter 11: Stacks and queues 277

Stack

A stack is a structure in which data items are stored in a particular order, then retrieved in the

reverse order. It can be described as a 'first in, last out' structure:

A stack can be operated with an array and an integer variable for use as a pointer. Initially the array

is empty, and the pointer is set to the first array element.

[1]

[2]

[3]

[4]

[5]

The first data item is added at the position of the pointer, then the pointer value is increased by one:

[1] Catrin

[2]

[3]

[4]

[5]

Further data items can be added, with the pointer moving downwards each time. The pointer

always indicates the next empty array element where a further data item can be added.

[1] Catrin

[2] Tom

[3] Susan

[4] John

[5]

John

Susan

Tom

Catrin

John

Susan

Tom

Catrin

John, Susan, Tom, Catrin Catrin, Tom, Susan, John

Catrin first in Catrin last out

pointer = 1

pointer = 2

pointer = 5

278 Java Programming for A-level Computer Science

To retrieve the data, the pointer is moved upwards by one position and the data item at that

location is output.

[1] Catrin

[2] Tom

[3] Susan

[4]

[5]

The process can continue, with the output of each data item and the pointer moving upwards until

the array is again empty. The first data item input will be the last data item output from the array.

[1]

[2]

[3]

[4]

[5]

For our first project in this chapter, we will produce a program to demonstrate the operation of a

stack. Begin the project in the standard way. Close all previous projects, then set up a New Project.

Give this the name stack, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the stack project, and select New / JFrame

Form. Give the Class Name as stack, and the Package as stackPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add a Table component to the form. Rename this as tblStack.

pointer = 4 output John

pointer = 1 output Catrin

 Chapter 11: Stacks and queues 279

Go to the Properties window for the table and locate the model property. Click in the right column

to open the editing window. Set the number of Rows to 8, and the number of Columns to 2.

Give titles and data types for the columns:

 Array index Integer

 Data String

Remove the ticks from the Editable column.

Click OK to return to the form layout screen. Check that the table headings are displayed correctly.

Add components to the form:

 A label 'Pointer', and a text field alongside with the name txtPointer.

 A text field with the name txtNewItem, and a button alongside with the name btnAdd and

the caption 'Add item'

 A button with the name btnRemove and the caption 'Remove item'.

280 Java Programming for A-level Computer Science

Use the Source tab to move to the program code screen. We will begin by setting up the array and

pointer variable needed for the stack structure.

package stackPackage;

public class stack extends javax.swing.JFrame {

 String[] data = new String[9];
 int pointer;

 public stack() {
 initComponents();
 }

Go now to the stack() method and use a loop to initialise each element in the data array. We will

set the pointer value to position 1.

 public stack() {
 initComponents();

 for (int i=1; i<=8; i++)
 {
 data[i]="****";
 }
 pointer=1;

 }

We will now create a display() method to display the array data in the table, and the pointer value

in the text field. Call this method from stack().

 public stack() {
 initComponents();
 for (int i=1; i<=8; i++)
 {
 data[i]="****";
 }
 pointer=1;

 display();

 }

 private void display()
 {
 for (int i=1; i<=8; i++)
 {
 tblStack.getModel().setValueAt(i,i-1,0);
 tblStack.getModel().setValueAt(data[i],i-1,1);
 }
 txtPointer.setText(String.valueOf(pointer));
 }

 Chapter 11: Stacks and queues 281

Run the program. Check that the pointer is shown with a value of 1, and the table contains '****'

entries to indicate that no data has been entered yet.

Close the program window and return to the NetBeans editing screen. Use the Design tab to move

to the form layout view, then double click the 'Add item' button to create a method.

We will begin by collecting the new data item from the text field. A presence check is carried out to

ensure that a data item has been entered, before continuing.

The data item is added to the array at the position indicated by the pointer variable, then the

pointer is increased by one. This moves the pointer to the next array position.

Finally, we will refresh the table by calling the display() method, then blank out the text field ready

for another data entry.

 private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {

 String newItem = txtNewItem.getText();
 if (newItem.length()>0)
 {
 data[pointer]=newItem;
 pointer++;
 display();
 txtNewItem.setText("");
 }

 }

Run the program and enter a series of data items. It is possible to add data to array elements 1 to 8

correctly, but an error occurs if we try to add a ninth data item as shown below.

282 Java Programming for A-level Computer Science

The error has occurred because we have attempted to store a data item in the array element
data[9] which does not exist.

Close the program window and return to the code editing screen. We will add error trapping
to the 'Add item' button click method.

The IF… conditional block will check for the pointer being set to a position beyond the end of
the array. If this occurs, the 'Add item' button and text field will be hidden so that no further
data can be input. At he same time, however, we will make sure that the 'Remove item'
button is visible, so that existing items can be retrieved from the stack.

 private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {
 String newItem = txtNewItem.getText();
 if (newItem.length()>0)
 {
 data[pointer]=newItem;
 pointer++;

 if (pointer>8)
 {
 btnAdd.setVisible(false);
 txtNewItem.setVisible(false);
 }

 display();
 txtNewItem.setText("");

 btnRemove.setVisible(true);

 }
 }

 Chapter 11: Stacks and queues 283

Run the program. Check that the 'Add item' button now disappears when the stack is full,
preventing an array error from occurring.

Close the program window and return to the NetBeans editing screen. Use the Design tab to move
to the form layout view, then double click the 'Remove item' button to create a method.

We will add lines of program code to the method which will:

 Move the pointer back by one position.

 Reset the data value at the pointer position to '****', to indicate that the data item at this
position has now been removed from the stack.

 If the pointer has reached position 1, the stack is empty. Any further attempts to remove
data items could cause errors. The 'Remove item' button is therefore hidden.

 The table is re-displayed, and we ensure that the 'Add item' button is visible.

 private void btnRemoveActionPerformed(java.awt.event.ActionEvent evt) {

 pointer--;
 data[pointer]="****";
 if (pointer==1)
 {
 btnRemove.setVisible(false);
 }
 btnAdd.setVisible(true);
 txtNewItem.setVisible(true);
 display();

 }

Run the completed program.

Add items to the stack, then remove them. Notice how the items are removed in the reverse of the

order in which they were added.

Check that the 'Remove item' button disappears when the stack is empty, but reappears when

further data items are added.

284 Java Programming for A-level Computer Science

Queue

The second abstract data structure we will examine is a queue. We are familiar with queues in

everyday life, when waiting for a bus or waiting to be served in a shop. A queue is a first in – first out

structure:

This contrasts with a stack, which is a first in – last out data structure.

We can again use an array to operate a queue, but two pointer variables are now needed. These are

called 'front' and 'back'.

The 'back' pointer operates in a similar way to the stack pointer by indicating the array position

where the next data item will be added.

[1] Catrin

[2]

[3]

[4]

[5]

As data items are added, the back pointer value increases:

[1] Catrin

[2] Tom

[3] Susan

[4] John

[5]

The 'front' pointer is set to the position of the data item which has been in the queue longest. When

this item is removed, the front point is moved to the next array element.

[1]

[2] Tom

[3] Susan

[4] John

[5]

John

Susan

Tom

Catrin

John, Susan, Tom, Catrin

Catrin first in

Catrin first out

John, Susan, Tom, Catrin

back = 5

back = 2

front = 1

front = 1

back = 5

front = 2

 Chapter 11: Stacks and queues 285

We will now produce a program to demonstrate the operation of a queue. Begin the project in the

standard way. Close all previous projects, then set up a New Project. Give this the name queue, and

ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the queue project, and select New / JFrame

Form. Give the Class Name as queue, and the Package as queuePackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add a Table component to the form. Rename this as tblQueue.

Go to the Properties window for the table and locate the model property. Click in the right column

to open the editing window. Set the number of Rows to 8, and the number of Columns to 2.

Give titles and data types for the columns:

 Array index Integer

 Data String

Remove the ticks from the Editable column.

286 Java Programming for A-level Computer Science

Click OK to return to the form layout screen. Check that the table headings are displayed correctly.

Add components to the form:

 A label 'Front pointer', and a text field alongside with the name txtFront.

 A label 'Back pointer', and a text field alongside with the name txtBack.

 A text field with the name txtNewItem, and a button alongside with the name btnAdd and

the caption 'Add item'

 A button with the name btnRemove and the caption 'Remove item'.

Use the Source tab to move to the program code screen. Begin by setting up the array and the front

and back pointer variables needed for the queue structure. Set the data array values to '****', and

initialise set both of the pointers to position 1 to represent an empty queue.

package queuePackage;

public class queue extends javax.swing.JFrame {

 String[] data = new String[9];
 int front;
 int back;

 public queue() {
 initComponents();

 for (int i=1; i<=8; i++)
 {
 data[i]="****";
 }
 front=1;
 back=1;

 }

 Chapter 11: Stacks and queues 287

We will now create a display() method to display the array data in the table, and the pointer value

in the text field. Call this method from stack().

 public queue() {
 initComponents();

 for (int i=1; i<=8; i++)
 {
 data[i]="****";
 }
 front=1;
 back=1;

 display();

 }

 private void display()
 {
 for (int i=1; i<=8; i++)
 {
 tblQueue.getModel().setValueAt(i,i-1,0);
 tblQueue.getModel().setValueAt(data[i],i-1,1);
 }
 txtFront.setText(String.valueOf(front));
 txtBack.setText(String.valueOf(back));
 }

Run the program. Check that the pointer is shown with a value of 1, and the table contains '****'

entries to indicate that no data has been entered yet.

Close the program window and return to the NetBeans editing screen. Use the Design tab to move

to the form layout view, then double click the 'Add item' button to create a method.

288 Java Programming for A-level Computer Science

We will now add lines of code which will carry out a series of tasks:

 Collect the new data item and carry out a presence check.

 If valid data has been entered, this will be stored in the array at the position of the back

pointer.

 The back pointer will be moved to the next array position, ready for the next data item to

be entered.

 The table data is re-displayed and the data field cleared.

private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {

 String newItem = txtNewItem.getText();
 if (newItem.length()>0)
 {
 data[back]=newItem;
 back++;
 display();
 txtNewItem.setText("");
 }

 }

Use the Design tab to move back to the form layout view, then double click the 'Remove item'
button to create a method.

We will add lines of code which will carry out several tasks:

 Reset the data at the position of the front pointer.

 Move the front pointer to the next array position, ready for the next data item to be
deleted.

 The updated table is re-displayed.

 private void btnRemoveActionPerformed(java.awt.event.ActionEvent evt) {

 data[front]="****";
 front++;
 display();

 }

Run the program. Check that data items can be added at the position of the back pointer, then
removed at the position of the front pointer.

 Chapter 11: Stacks and queues 289

The queue is working correctly, but it is not yet error trapped. If you continue to click the 'Remove
item' button then the front pointer value will continue to increase after all the data items have been
removed, until an array error occurs.

Close the program window and return to the code editing screen.

Consider what happens when the queue becomes empty.

[1]

[2] Tom

[3]

[4]

[5]

Removing 'Tom' moves the front pointer forward to position 3. The front pointer is now in the same

position as the back pointer.

[1]

[2]

[3]

[4]

[5]

We can detect this pointer condition in the program and prevent further data items from being
removed.

back = 3

front = 2

back = 3 front = 3

290 Java Programming for A-level Computer Science

Add lines to the 'Remove item' button click method to avoid the array error by hiding the
'Remove item' button when the queue is empty.

 private void btnRemoveActionPerformed(java.awt.event.ActionEvent evt) {
 data[front]="****";
 front++;

 if (front==back)
 {
 btnRemove.setVisible(false);
 }
 btnAdd.setVisible(true);
 txtNewItem.setVisible(true);

 display();
 }

Return to the 'Add item' button click method. Add a line to make the 'Remove item' button
visible again when further data is entered.

private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {
 String newItem = txtNewItem.getText();
 if (newItem.length()>0)
 {
 data[back]=newItem;
 back++;
 display();
 txtNewItem.setText("");

 btnRemove.setVisible(true);

 }
 }

Run the program. Enter some items, then delete them. Check that the 'Delete item' button
disappears and front pointer cannot be changed if the queue is empty. The 'Delete item'
button should re-appear if further data items are entered.

At this point you might realise that there is a serious problem with the program! As data items
are added and removed, the queue moves downwards through the array and very quickly
reaches the limit of the array. After that, no further data items can be entered.

 Chapter 11: Stacks and queues 291

Close the program window and return to the NetBeans editing screen.

We must re-think our program strategy. The solution is to produce a circular queue. Consider the

situation where two data items are present in the queue. 'Susan' is at the front, and will be the next

to leave. The back pointer is at position 8 ready for the next data item to be added.

When another data item 'Robert' is added, the back pointer moves to position 1, ready for the next

data item to be entered. The back pointer can then move forward in the normal way as each item is

added.

After adding and then removing several more data items, the front pointer will also move from

location 8 to location 1.

The queue will be able to continue to run indefinately, as long as no more than eight items are

present at any time.

8

7

6

5

2

1

3

4

John

Susan front

back

8

7

6

5

1

2

3

4

front

Alun

Judith

Neil

back

8

7

6

5 4

1

2

3

John

Robert Alun

back

Susan front

292 Java Programming for A-level Computer Science

Add lines of code to the 'Delete item' button click method to implement the circular queue. If the

front pointer moves beyond position 8, it will be reset to position 1.

 private void btnRemoveActionPerformed(java.awt.event.ActionEvent evt) {
 data[front]="****";
 front++;

 if (front>8)
 {
 front=1;
 }

 if (front==back)
 {
 btnRemove.setVisible(false);
 }
 btnAdd.setVisible(true);
 txtNewItem.setVisible(true);
 display();
 }

Move now to the 'Add item' button click method and add a similar series of lines to impliment the

circular queue. We will also make sure that the 'Remove item' button is visible if there are items

present in the queue.

 private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {
 String newItem = txtNewItem.getText();
 if (newItem.length()>0)
 {
 data[back]=newItem;
 back++;

 if (back>8)
 {
 back=1;
 }
 btnRemove.setVisible(true);

 display();
 txtNewItem.setText("");
 }
 }

Run the program. Carry out a series of tests:

 Check that data items can be entered, then removed correctly in the same order that they

were entered.

 The 'Remove item' button should disappear when the queue becomes empty, and reappear

when further data is entered.

You might discover one further problem! If the queue becomes full, data items will be overwritten

when further data is entered, as in the example below. We must stop this happening.

 Chapter 11: Stacks and queues 293

Close the program window and return to the NetBeans editing screen.

When the queue becomes full, the back pointer moves forward to the same position as the front

pointer. We can detect this condition and make the 'Add item' button invisible, to prevent further

data entries. Go to the 'Add item' button click method and add the extra lines of code.

 private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {
 String newItem = txtNewItem.getText();
 if (newItem.length()>0)
 {
 data[back]=newItem;
 back++;
 if (back>8)
 {
 back=1;
 }
 display();
 txtNewItem.setText("");
 btnRemove.setVisible(true);

 if (front==back)
 {
 btnAdd.setVisible(false);
 txtNewItem.setVisible(false);
 }

 }
 }

Run the completed queue program and check that this now fully working correctly.

294 Java Programming for A-level Computer Science

Now that we have investigated how stacks and queues can be operated using arrays, we will look at

a couple of example applications which make use of these abstract data structures.

A simple drawing program is required. The user should be able to enter lines by

clicking and dragging the mouse. The program should provide an 'undo' function.

The user will draw a series of lines to build up an image. If the drawing becomes unsatisfactory at

any time, it should be possible to progressively remove lines to return to a previous stage and try a

different design. It will be necessary to remove lines in the reverse of the order in which they were

added, so a stack data structure can be used.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name draw, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the draw project, and select New / JFrame

Form. Give the Class Name as draw, and the Package as drawPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add a panel to the form, renaming this as pnlDraw. Go to the Properties window and set the

background property to White by means of the dropdown list. Set the preferredSize property to

[600, 480].

 Chapter 11: Stacks and queues 295

The panel will provide the drawing area for the application. We will now add an 'undo' icon.

Go to the Projects window in the top left of the NetBeans page. Open the draw project until

drawPackage is reached. Right-click on the drawPackage icon and select New / Java Package.

Name the package as 'resources', then return to the NetBeans editing screen.

Before continuing, obtain or create a suitable icon for the 'undo' function. This should be in .JPG

or .PNG format. Adjust the size of the icon to approximately 50 pixels square.

Add a label component to the form, to the right of the panel area. Rename the label as lblUndo. Go

to the Properties window and locate the icon property. Click the ellipsis (…) symbol to open a

selection window. Use the 'Import to Project' button to load the undo icon image.

Return to the form layout page. Check that the icon image is displayed correctly. Right-click the icon

and use the Edit Text option to remove the label caption.

296 Java Programming for A-level Computer Science

Use the Source tab to move to the program code screen. Add two Java modules which will be

needed for producing the graphics, along with arrays to hold the x- and y-coordinates of the lines

which we will be drawing.

package drawPackage;

import java.awt.Graphics2D;
import java.awt.Color;

public class draw extends javax.swing.JFrame {

 int[] xpos1=new int[100];
 int[] ypos1=new int[100];
 int[] xpos2=new int[100];
 int[] ypos2=new int[100];
 int count=0;
 Boolean drawing=false;

 public draw() {
 initComponents();
 }

Images will be made up from a series of line segments.

For each line, the x and y pixel cooordinates for the end points will be stored in the corresponding

elements of the four parallel arrays. For example, for line segment 6, the end coordinates will be

stored as: xpos1[6], ypos1[6], xpos2[6], and ypos2[6]

ypos1[6]

xpos1[6]

xpos2[6]

ypos2[6]

 Chapter 11: Stacks and queues 297

Add a drawImage() method to plot the lines which are stored in the xpos and ypos arrays.

 public draw() {
 initComponents();
 }

 private void drawImage(int x, int y)
 {
 Graphics2D g = (Graphics2D) pnlDraw.getGraphics();
 g.setColor(Color.white);
 g.fillRect(0,0, 620,500);
 g.setColor(Color.black);
 for (int i=1; i<count; i++)
 {
 g.drawLine(xpos1[i], ypos1[i], xpos2[i], ypos2[i]);
 }
 g.drawLine(xpos1[count], ypos1[count], x, y);
 }

The drawImage() method begins by clearing the drawing area using a white rectangle fill. A loop

will then plot each of the completed lines of the drawing.

The last command of the method:

 g.drawLine(xpos1[count], ypos1[count], x, y);

draws a line from the start of the final line segment to the current mouse position (x, y). This will

produce a 'rubber band' line which can expand as the mouse is dragged to the required finishing

position of the new line segment.

Java provides different methods to respond to: the mouse button being pressed, the mouse being

dragged with the button held down, and the mouse button being released. We will make use of all

three of these:

 mousePressed the start position of the line (xpos1, ypos1) will be recorded

 mouseDragged we will draw a rubber band line from the start position of the line to

 the current mouse position

 mouseReleased the end position of the line (xpos2, ypos2) will be recorded

mouse

pressed

 mouse

dragged

mouse

released

ed

298 Java Programming for A-level Computer Science

Use the Design tab to move to the form layout page, then select the white panel. Go to the

Properties window and open the Events list.

Locate the mousePressed event, and select pnlDrawMousePressed from the drop down list.

Add program code to the pnlDrawMousePressed method which:

 gets the x and y cordinates for the current mouse position,

 adds one to the count of line segments,

 enters the mouse x and y cooordinates into the xpos1[] and ypos1[] arrays to record the

start position for the line.

 private void pnlDrawMousePressed(java.awt.event.MouseEvent evt) {

 int x=evt.getX();
 int y=evt.getY();
 count++;
 xpos1[count]=x;
 ypos1[count]=y;
 drawImage(x,y);

 }

Click the Design tab to return to the form layout view. Select the white panel and go to the Events

list in the Properties window. Locate the the mouseDragged event, and select

pnlDrawMouseDragged from the drop down list.

For this method, we simply need to get the current mouse coordinates x and y, then pass these to

the drawImage() method so that a rubber band line can be drawn from the starting point of the line

to the current mouse position.

 private void pnlDrawMouseDragged(java.awt.event.MouseEvent evt) {

 int x=evt.getX();
 int y=evt.getY();
 drawImage(x,y);

 }

Return once more to the form layout view. Select the panel, go to the Events list in the Properties

window, and locate the the mouseReleased event. Select pnlDrawMouseReleased.

In this method we will get the mouse x and y cooordinates and store these in the xpos2[] and

ypos2[] arrays to mark the end of the line segment.

 Chapter 11: Stacks and queues 299

 private void pnlDrawMouseReleased(java.awt.event.MouseEvent evt) {

 int x=evt.getX();
 int y=evt.getY();
 xpos2[count]=x;
 ypos2[count]=y;
 drawImage(x,y);

 }

Run the program. Draw a line by:

 pressing the mouse button down on the start point,

 dragging the mouse to the finish point, then

 releasing the mouse button.

Repeat this sequence to produce more lines.

You may notice that it is difficult to draw a continuous line made of from separate segments, as gaps

may or appear or the ends of the lines may cross if the mouse is not positioned accurately at the

start of the line. We can reduce this difficulty by making the start of each line segment snap to the

end of the previous line if this is sufficiently close.

Close the program window and return to the program code view. Locate the pnlDrawMousePressed

method. We will add lines of code to operate the snap procedure. These lines carry out a series of

tasks when the user presses the mouse button down at the start of a new line segment:

 A loop checks each of the previous lines in turn.

 The difference in x position is calculated between the end of the previous line and the start

of the current line.

 The difference in y position is similarly calculated.

 If both the x difference and y difference are less than 5 pixels, then the start position of the

current line is snapped to the end position of this previous line segment.

300 Java Programming for A-level Computer Science

Add lines of code:

 private void pnlDrawMousePressed(java.awt.event.MouseEvent evt) {
 int x=evt.getX();
 int y=evt.getY();
 count++;
 xpos1[count]=x;
 ypos1[count]=y;

 for(int j=1;j<count;j++)
 {
 int xDiff= Math.abs(xpos2[j]-xpos1[count]);
 int yDiff= Math.abs(ypos2[j]-ypos1[count]);
 if (xDiff<5 && yDiff<5)
 {
 xpos1[count]=xpos2[j];
 ypos1[count]=ypos2[j];
 }
 }

 drawImage(x,y);
 }

Run the program and check that it is now easier to create a continuous series of line segments

without gaps or lines crossing.

Close the program window and return to the NetBeans editing screen. Use the Design tab to move

to the form layout view. We will now create a button click method for the 'Undo' icon.

Select the 'Undo' icon and go to the Properties window. Click the Events tab and locate the

mouseClicked method. Select lblUndoMouseClicked from the drop down list.

The button click method will open on the program code page.

 Chapter 11: Stacks and queues 301

It is very easy to operate a stack using the x- and y-coordinate arrays and the count variable. Count

is acting as a pointer to the array position where the most recent line has been entered. To remove

a line, we only need to decrease the value of count by one, so that the last line segment is no longer

included when the drawImage() method is called. If the user enters a replacement line, count will

be increased again and the new x- and y-coorodinates will overwrite the old values.

We will check that count is greater than zero before attempting to delete a line, to prevent an error

occurring with an already empty array.

After deleting the most recent line, we call drawImage() to update the screen display. A rubber

band line should not be drawn to the current position of the mouse, which is clicking the Undo

button! We will therefore set the final drawing position as the end of the previous line segment at

xpos2[count], ypos2[count].

 private void lblUndoMouseClicked(java.awt.event.MouseEvent evt) {

 if (count>0)
 {
 count--;
 drawImage(xpos2[count], ypos2[count]);
 }

 }

Run the program. Enter a series of lines, then check that these can be deleted in the correct reverse

order.

302 Java Programming for A-level Computer Science

For the final project in this chapter, we will develop a program which uses a queue data structure.

The County Highways Department needs to carry out major repairs to a bridge on a

main road. The work will take a number of months, and will require the road across the

bridge to be reduced to a single lane controlled by traffic lights.

Before beginning the work, the project planners need to estimate the likely maximum

length of traffic queues at the bridge when the traffic lights are in operation, and the

likely maximum waiting time for road users.

It is intended that the traffic lights will be alternately red and green for periods of three

minutes each. During the time that the traffic lights are green, a maximum of eight

vehicles per minute will be able to cross the bridge.

A traffic survey has been carried out near the bridge during busier times of the day. It is

found that the number of cars arriving in any minute is randomly distributed between a

minimum of zero and a maximum of six.

We will set up a program to run a simulation of this scenario, and determine the maximum length of

traffic queue and maximum vehicle waiting time.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name trafficLights, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the trafficLights project, and select New /

JFrame Form. Give the Class Name as trafficLights, and the Package as trafficLightsPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add components to the form as shown below:

 A List component. Give this the name lstOutput.

 A button with the caption 'Run simulation' and the name btnRun.

 A label 'Maximum queue', followed by a text field with the name txtMaxQueue.

 A label 'Maximum wait', followed by a text field with the name txtMaxWait. Follow the

text field with a further label 'minutes'.

 Chapter 11: Stacks and queues 303

Select the List, then go to the Properties window. Locate the model property and delete the entries

'Item 1, Item 2, Item 3, Item 4, Item 5' from the right hand column.

Use the Source tab to move to the program code page. Add Java modules which will be needed to

generate random numbers and output results to the List box during the simulation.

package trafficLightsPackage;

import java.util.Random;

import javax.swing.DefaultListModel;

public class trafficLights extends javax.swing.JFrame {

 public trafficLights() {

 initComponents();

 }

Use the Design tab to return to the form layout page. Double click the 'Run simulation' button to

create a method. Begin by adding variables which will be needed for the simulation.

private void btnRunActionPerformed(java.awt.event.ActionEvent evt) {

 int[] car=new int[100];

 int front=1;

 int back=1;

 int minute;

 int queue=0;

 int waitingTime;

 int arrival;

 int passing;

 int maxQueue=0;

 int maxWaitingTime=0;

 String colour="red";

 DefaultListModel listModel = new DefaultListModel();

}

304 Java Programming for A-level Computer Science

 Car[] is an array with 100 elements, to represent the vehicles queueing at any time. We are making

an assumption that the queue will never exceed 100 vehicles, but the array could be enlarged later if

this turns out not to be the case.

The car[] array will record the number of the minute in which each vehicle arrives at the traffic

lights and joins the queue. It will be possible to calculate the waiting time by comparing the arrival

time with the time when the vehicle passes the lights and leaves the queue. For example:

 vehicle arrives in minute 17

 vehicle passes the traffic lights in minute 20

 waiting time 3 minutes

Front and back are pointers to allow us to operate a circular queue structure with the car[] array.

The next step is to produce a loop which operates for each traffic light colour change. It will be

reasonable to run the simulation for 50 trafic light changes, representing two and a half hours of real

time. Add code which will set the 'colour' variable alternately to red or green, then display the

traffic light state in the list box.

private void btnRunActionPerformed(java.awt.event.ActionEvent evt) {

 int[] car=new int[100];

 int front=1;

 int back=1;

 int minute;

 int queue=0;

 int waitingTime;

 int arrival;

 int passing;

 int maxQueue=0;

 int maxWaitingTime=0;

 String colour="red";

 DefaultListModel listModel = new DefaultListModel();

 for (int t=0; t<50;t++)

 {

 if (colour.equals("red"))

 {

 colour="green";

 }

 else

 {

 colour="red";

 }

 listModel.addElement("Traffic lights are "+colour);
 listModel.addElement(" ");

 lstOutput.setModel(listModel);

 }

 }

Run the program. Click the 'Run simulation' button and check that changes of traffic light colour are

shown, as in the illustration below. Adjust the width of the List if necessary, so that all the text is

visible.

 Chapter 11: Stacks and queues 305

Close the program window and return to the Run simulation button click method on the program

code page.

Each traffic light colour is displayed for three minutes. We can add a loop which calculates each

minute number from the start of the simulation. Three minutes have elapsed for each completed

time period t, plus the number of minutes m since the start of the current time period.

 for (int t=0; t<50;t++)
 {

 if (colour.equals("red"))

 {

 colour="green";

 }

 else

 {

 colour="red";

 }

 for (int m=1; m<=3;m++)

 {

 minute=t*3 + m;

 listModel.addElement("Minute "+minute);

 listModel.addElement("Traffic lights are "+colour);

 listModel.addElement(" ");

 lstOutput.setModel(listModel);

 }

 }

 }

Run the program. Click the 'Run simulation' button and check that minutes are shown correctly.

306 Java Programming for A-level Computer Science

Close the program window and return to the code page.

We will now use the random number generator to create a random number between 0 and 6, to

represent cars arriving at the traffic lights each minute.

 for (int m=1; m<=3;m++)
 {

 minute=t*3 + m;

 Random r = new Random();

 arrival= r.nextInt(7);

 listModel.addElement("Minute "+minute);

 listModel.addElement("Traffic lights are "+colour);

 listModel.addElement("Cars arriving: "+arrival);

 listModel.addElement(" ");

 lstOutput.setModel(listModel);

 }

Run the program. Check that the numbers of cars arriving each minute are within the correct range,

and appear randomly distributed. Different sets of random numbers should be produced each time

the 'Run simulation' button is clicked.

Close the program window and return to the code editing screen.

The next step in the simulation is to determine the length of any queue each minute, and determine

the maximum queue length during the simulation period. We will add lines of code to the 'Run

simulation' method which will:

 Add vehicles arriving each minute to the current queue.

 If the traffic light is green, allow the waiting vehicles to pass the road works and leave the

queue, up to a maximum of eight vehicles per minute.

 If the current queue is the longest so far in the simulation, make this the new maximum

queue length.

 Output the current queue length at the end of each minute, and output the maximum queue

length when the simulation ends.

 Chapter 11: Stacks and queues 307

 for (int m=1; m<=3;m++)

 {

 minute=t*3 + m;

 Random r = new Random();

 arrival= r.nextInt(7);

 queue=queue+arrival;

 passing=0;

 if (colour.equals("green"))

 {

 passing=8;

 if (queue<8)

 {

 passing=queue;

 }

 queue=queue-passing;

 }

 if (queue>maxQueue)

 {

 maxQueue=queue;

 }

 listModel.addElement("Minute "+minute);

 listModel.addElement("Traffic lights are "+colour);

 listModel.addElement("Cars arriving: "+arrival);

 if (colour.equals("green"))

 {

 listModel.addElement("Cars passing the traffic lights: "+passing);

 }

 listModel.addElement("Current queue: "+queue);

 listModel.addElement(" ");

 lstOutput.setModel(listModel);

 }

 }

 txtMaxQueue.setText(Integer.toString(maxQueue));

 }

Start the program and run a simulation. Scroll the output list to a point in the middle of the

simulation period. Check that the numbers of vehicles arriving, numbers of vehicles passing the

traffic lights and the queue lengths are consistant over a period of several minutes.

308 Java Programming for A-level Computer Science

Close the program window and return to the code editing screen.

We will try to calculate the waiting times for individual vehicles. The first step is to record the arrival

time of each vehicle in a queue structure. We will add lines of code to do this:

 If any vehicles have arrived at the traffic lights during the current minute, then carry out a

loop for each of the arriving vehicles.

 Add the number of the arrival minute to the car[] array at the position of the back pointer,

then move the back pointer to the next array element, ready for the next vehicle to join the

queue.

 If the back pointer has passed the end of the array, then reset the back pointer to array

element 1. This provides a circular queue structure which can continue indefinitely,

provided that the number of vehicles in the queue never exceeds 100.

 for (int m=1; m<=3;m++)
 {

 minute=t*3 + m;

 Random r = new Random();

 arrival= r.nextInt(7);

 if (arrival>0)

 {

 for (int c=1; c<=arrival; c++)

 {

 car[back]=minute;

 back++;

 if (back>99)

 {

 back=1;

 }

 }

 }

 queue=queue+arrival;

 passing=0;

 if (colour.equals("green"))

 {

Move down to the section of the method which handles the periods when the traffic light is green.

We will now process the vehicles which pass the traffic light and leave the queue.

We will add lines of code, as shown below, to carry out a series of tasks:

 If there are any vehicles in the queue which will pass the traffic lights, then loop for each of

the vehicles passing.

 Obtain the time of arrival of the vehicle from the car[] array. Calculate the waiting time by

subtracting the arrival time from the current minute.

 If this waiting time is the longest found so far in the simulation, then make this the

maximum waiting time.

 Display the waiting time for the current vehicle.

 Remove the vehicle from the queue by advancing the front pointer. If the pointer moves

past the end of the array, then reset the front pointer position to array element 1, so that a

circular queue is created.

 At the end of the simulation, output the maximum waiting time.

 Chapter 11: Stacks and queues 309

 listModel.addElement("Minute "+minute);

 listModel.addElement("Traffic lights are "+colour);

 listModel.addElement("Cars arriving: "+arrival);

 if (colour.equals("green"))

 {

 listModel.addElement("Cars passing the traffic lights: "+passing);

 if (passing>0)

 {

 for (int c=1;c<=passing;c++)

 {

 waitingTime = minute-car[front];

 if (waitingTime>maxWaitingTime)

 {

 maxWaitingTime=waitingTime;

 }

 listModel.addElement("Car "+front+

 " waiting time: "+waitingTime+" minutes");

 front++;

 if (front>99)

 {

 front=1;

 }

 }

 }

 }

 listModel.addElement("Current queue: "+queue);

 listModel.addElement(" ");

 lstOutput.setModel(listModel);

 }

 }

 txtMaxQueue.setText(Integer.toString(maxQueue));

 txtMaxWait.setText(Integer.toString(maxWaitingTime));

 }

Note that the line beginning 'listModel.addElement("…' should be entered as a single line of code.

Start the program and run a simulation. Check that the results are consistant and are displayed

correctly.

Run the simulation a number of times. What advice would you give to the Highways Department

concerning the likely maximum queue length and maximum waiting time for vehicles?

